Source code for thewalrus.quantum.fock_tensors

# Copyright 2019-2020 Xanadu Quantum Technologies Inc.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Set of functions for calculating various state representations, probabilities and
classical subsystems of Gaussian states.
"""
# pylint: disable=too-many-arguments

from itertools import count, product, chain

from collections import OrderedDict

import numpy as np
import dask

from scipy.special import factorial as fac
from numba import jit

from ..symplectic import expand, is_symplectic, reduced_state

from .._hafnian import hafnian, hafnian_repeated, reduction
from .._hermite_multidimensional import hermite_multidimensional, hafnian_batched, interferometer

from .conversions import (
    Amat,
    Qmat,
    reduced_gaussian,
    complex_to_real_displacements,
)

from .gaussian_checks import is_classical_cov, is_pure_cov, is_valid_cov


def pure_state_amplitude(mu, cov, i, include_prefactor=True, tol=1e-10, hbar=2, check_purity=True):
    r"""Returns the :math:`\langle i | \psi\rangle` element of the state ket
    of a Gaussian state defined by covariance matrix cov.


    Args:
        mu (array): length-:math:`2N` quadrature displacement vector
        cov (array): length-:math:`2N` covariance matrix
        i (list): list of amplitude elements
        include_prefactor (bool): if ``True``, the prefactor is automatically calculated
            used to scale the result.
        tol (float): tolerance for determining if displacement is negligible
        hbar (float): the value of :math:`\hbar` in the commutation
            relation :math:`[\x,\p]=i\hbar`.
        check_purity (bool): if ``True``, the purity of the Gaussian state is checked
            before calculating the state vector.

    Returns:
        complex: the pure state amplitude
    """
    if check_purity:
        if not is_pure_cov(cov, hbar=hbar, rtol=1e-05, atol=1e-08):
            raise ValueError("The covariance matrix does not correspond to a pure state")

    rpt = i
    beta = complex_to_real_displacements(mu, hbar=hbar)
    Q = Qmat(cov, hbar=hbar)
    A = Amat(cov, hbar=hbar)
    (n, _) = cov.shape
    N = n // 2
    B = A[0:N, 0:N].conj()
    alpha = beta[0:N]

    if np.linalg.norm(alpha) < tol:
        # no displacement
        if np.prod([k + 1 for k in rpt]) ** (1 / len(rpt)) < 3:
            B_rpt = reduction(B, rpt)
            haf = hafnian(B_rpt)
        else:
            haf = hafnian_repeated(B, rpt)
    else:
        gamma = alpha - B @ np.conj(alpha)
        if np.prod([k + 1 for k in rpt]) ** (1 / len(rpt)) < 3:
            B_rpt = reduction(B, rpt)
            np.fill_diagonal(B_rpt, reduction(gamma, rpt))
            haf = hafnian(B_rpt, loop=True)
        else:
            haf = hafnian_repeated(B, rpt, mu=gamma, loop=True)

    if include_prefactor:
        pref = np.exp(-0.5 * (np.linalg.norm(alpha) ** 2 - alpha.conj() @ B @ alpha.conj()))
        haf *= pref

    return haf / np.sqrt(np.prod(fac(rpt)) * np.sqrt(np.linalg.det(Q)))


def state_vector(
    mu, cov, post_select=None, normalize=False, cutoff=5, hbar=2, check_purity=True, **kwargs
):
    r"""Returns the state vector of a (PNR post-selected) Gaussian state.

    The resulting density matrix will have shape

    .. math:: \underbrace{D\times D \times \cdots \times D}_M

    where :math:`D` is the Fock space cutoff, and :math:`M` is the
    number of *non* post-selected modes, i.e. ``M = len(mu)//2 - len(post_select)``.

    If post_select is None then the density matrix elements are calculated using
    the multidimensional Hermite polynomials which provide a significantly faster
    evaluation.


    Args:
        mu (array): length-:math:`2N` means vector in xp-ordering
        cov (array): :math:`2N\times 2N` covariance matrix in xp-ordering
        post_select (dict): dictionary containing the post-selected modes, of
            the form ``{mode: value}``.
        normalize (bool): If ``True``, a post-selected density matrix is re-normalized.
        cutoff (dim): the final length (i.e., Hilbert space dimension) of each
            mode in the density matrix.
        hbar (float): the value of :math:`\hbar` in the commutation
            relation :math:`[\x,\p]=i\hbar`.
        check_purity (bool): if ``True``, the purity of the Gaussian state is checked
            before calculating the state vector.

    Keyword Args:
        choi_r (float or None): Value of the two-mode squeezing parameter used in Choi-Jamiolkoski
            trick in :func:`~.fock_tensor`. This keyword argument should only be used when ``state_vector``
            is called by :func:`~.fock_tensor`.

    Returns:
        np.array[complex]: the state vector of the Gaussian state
    """
    if check_purity:
        if not is_pure_cov(cov, hbar=hbar, rtol=1e-05, atol=1e-08):
            raise ValueError("The covariance matrix does not correspond to a pure state")

    beta = complex_to_real_displacements(mu, hbar=hbar)
    A = Amat(cov, hbar=hbar)
    Q = Qmat(cov, hbar=hbar)

    (n, _) = cov.shape
    N = n // 2

    B = A[0:N, 0:N]
    alpha = beta[0:N]
    gamma = np.conj(alpha) - B @ alpha
    prefexp = -0.5 * (np.linalg.norm(alpha) ** 2 - alpha @ B @ alpha)
    pref = np.exp(prefexp.conj())
    if post_select is None:
        choi_r = kwargs.get("choi_r", None)
        if choi_r is None:
            denom = np.sqrt(np.sqrt(np.linalg.det(Q).real))
        else:
            rescaling = np.concatenate(
                [np.ones([N // 2]), (1.0 / np.tanh(choi_r)) * np.ones([N // 2])]
            )
            B = np.diag(rescaling) @ B @ np.diag(rescaling)
            gamma = rescaling * gamma
            denom = np.sqrt(np.sqrt(np.linalg.det(Q / np.cosh(choi_r)).real))

        psi = pref * hafnian_batched(B.conj(), cutoff, mu=gamma.conj(), renorm=True) / denom
    else:
        M = N - len(post_select)
        psi = np.zeros([cutoff] * (M), dtype=np.complex128)

        for idx in product(range(cutoff), repeat=M):
            el = []

            counter = count(0)
            modes = (np.arange(N)).tolist()
            el = [post_select[i] if i in post_select else idx[next(counter)] for i in modes]
            psi[idx] = pure_state_amplitude(
                mu, cov, el, check_purity=False, include_prefactor=False, hbar=hbar
            )

        psi = psi * pref

    if normalize:
        norm = np.sqrt(np.sum(np.abs(psi) ** 2))
        psi = psi / norm

    return psi


def density_matrix_element(mu, cov, i, j, include_prefactor=True, tol=1e-10, hbar=2):
    r"""Returns the :math:`\langle i | \rho | j \rangle` element of the density matrix
    of a Gaussian state defined by covariance matrix cov.

    Args:
        mu (array): length-:math:`2N` quadrature displacement vector
        cov (array): length-:math:`2N` covariance matrix
        i (list): list of density matrix rows
        j (list): list of density matrix columns
        include_prefactor (bool): if ``True``, the prefactor is automatically calculated
            used to scale the result.
        tol (float): tolerance for determining if displacement is negligible
        hbar (float): the value of :math:`\hbar` in the commutation
            relation :math:`[\x,\p]=i\hbar`.

    Returns:
        complex: the density matrix element
    """
    rpt = i + j
    beta = complex_to_real_displacements(mu, hbar=hbar)
    A = Amat(cov, hbar=hbar)
    if np.linalg.norm(beta) < tol:
        # no displacement
        if np.prod([k + 1 for k in rpt]) ** (1 / len(rpt)) < 3:
            A_rpt = reduction(A, rpt)
            haf = hafnian(A_rpt)
        else:
            haf = hafnian_repeated(A, rpt)
    else:
        # replace the diagonal of A with gamma
        gamma = beta.conj() - A @ beta
        if np.prod([k + 1 for k in rpt]) ** (1 / len(rpt)) < 3:
            A_rpt = reduction(A, rpt)
            np.fill_diagonal(A_rpt, reduction(gamma, rpt))
            haf = hafnian(A_rpt, loop=True)
        else:
            haf = hafnian_repeated(A, rpt, mu=gamma, loop=True)

    if include_prefactor:
        haf *= _prefactor(mu, cov, hbar=hbar)

    return haf / np.sqrt(np.prod(fac(rpt)))


def density_matrix(mu, cov, post_select=None, normalize=False, cutoff=5, hbar=2):
    r"""Returns the density matrix of a (PNR post-selected) Gaussian state.

    The resulting density matrix will have shape

    .. math:: \underbrace{D\times D \times \cdots \times D}_{2M}

    where :math:`D` is the Fock space cutoff, and :math:`M` is the
    number of *non* post-selected modes, i.e. ``M = len(mu)//2 - len(post_select)``.

    Note that we use the Strawberry Fields convention for indexing the density
    matrix; the first two dimensions correspond to subsystem 1, the second two
    dimensions correspond to subsystem 2, etc.
    If post_select is None then the density matrix elements are calculated using
    the multidimensional Hermite polynomials which provide a significantly faster
    evaluation.

    Args:
        mu (array): length-:math:`2N` means vector in xp-ordering
        cov (array): :math:`2N\times 2N` covariance matrix in xp-ordering
        post_select (dict): dictionary containing the post-selected modes, of
            the form ``{mode: value}``. If post_select is None the whole non post-selected density matrix
            is calculated directly using (multidimensional) Hermite polynomials, which is significantly faster
            than calculating one hafnian at a time.
        normalize (bool): If ``True``, a post-selected density matrix is re-normalized.
        cutoff (dim): the final length (i.e., Hilbert space dimension) of each
            mode in the density matrix.
        hbar (float): the value of :math:`\hbar` in the commutation
            relation :math:`[\x,\p]=i\hbar`.

    Returns:
        np.array[complex]: the density matrix of the Gaussian state
    """
    N = len(mu) // 2
    pref = _prefactor(mu, cov, hbar=hbar)

    if post_select is None:
        A = Amat(cov, hbar=hbar).conj()
        sf_order = tuple(chain.from_iterable([[i, i + N] for i in range(N)]))

        if np.allclose(mu, np.zeros_like(mu)):
            tensor = pref * hermite_multidimensional(-A, cutoff, renorm=True, modified=True)
            return tensor.transpose(sf_order)
        beta = complex_to_real_displacements(mu, hbar=hbar)
        y = beta - A @ beta.conj()
        tensor = pref * hermite_multidimensional(-A, cutoff, y=y, renorm=True, modified=True)
        return tensor.transpose(sf_order)

    M = N - len(post_select)
    rho = np.zeros([cutoff] * (2 * M), dtype=np.complex128)

    for idx in product(range(cutoff), repeat=2 * M):
        el = []

        counter = count(0)
        modes = (np.arange(2 * N) % N).tolist()
        el = [post_select[i] if i in post_select else idx[next(counter)] for i in modes]

        el = np.array(el).reshape(2, -1)
        el0 = el[0].tolist()
        el1 = el[1].tolist()

        sf_idx = np.array(idx).reshape(2, -1)
        sf_el = tuple(sf_idx[::-1].T.flatten())

        rho[sf_el] = density_matrix_element(mu, cov, el0, el1, include_prefactor=False, hbar=hbar)

    rho *= pref

    if normalize:
        # construct the standard 2D density matrix, and take the trace
        new_ax = np.arange(2 * M).reshape([M, 2]).T.flatten()
        tr = np.trace(rho.transpose(new_ax).reshape([cutoff**M, cutoff**M])).real
        # renormalize
        rho /= tr

    return rho


[docs] def fock_tensor( S, alpha, cutoff, choi_r=np.arcsinh(1.0), check_symplectic=True, sf_order=False, rtol=1e-05, atol=1e-08, ): r""" Calculates the Fock representation of a Gaussian unitary parametrized by the symplectic matrix S and the displacements alpha up to cutoff in Fock space. Args: S (array): symplectic matrix alpha (array): complex vector of displacements cutoff (int): cutoff in Fock space choi_r (float): squeezing parameter used for the Choi expansion check_symplectic (boolean): checks whether the input matrix is symplectic sf_order (boolean): reshapes the tensor so that it follows the sf ordering of indices rtol (float): the relative tolerance parameter used in `np.allclose` atol (float): the absolute tolerance parameter used in `np.allclose` Return: (array): Tensor containing the Fock representation of the Gaussian unitary """ # Check the matrix is symplectic if check_symplectic: if not is_symplectic(S, rtol=rtol, atol=atol): raise ValueError("The matrix S is not symplectic") # And that S and alpha have compatible dimensions m, _ = S.shape l = m // 2 if l != len(alpha): raise ValueError("The matrix S and the vector alpha do not have compatible dimensions") # Check if S corresponds to an interferometer, if so use optimized routines if np.allclose(S @ S.T, np.identity(m), rtol=rtol, atol=atol) and np.allclose( alpha, 0, rtol=rtol, atol=atol ): reU = S[:l, :l] imU = S[:l, l:] U = reU - 1j * imU Ub = np.block([[0 * U, -U], [-U.T, 0 * U]]) tensor = interferometer(Ub, cutoff) else: # Construct the covariance matrix of l two-mode squeezed vacua pairing modes i and i+l ch = np.cosh(choi_r) * np.identity(l) sh = np.sinh(choi_r) * np.identity(l) zh = np.zeros([l, l]) Schoi = np.block([[ch, sh, zh, zh], [sh, ch, zh, zh], [zh, zh, ch, -sh], [zh, zh, -sh, ch]]) # And then its Choi expanded symplectic S_exp = expand(S, list(range(l)), 2 * l) @ Schoi # And this is the corresponding covariance matrix cov = S_exp @ S_exp.T alphat = np.array(list(alpha) + ([0] * l)) x = 2 * alphat.real p = 2 * alphat.imag mu = np.concatenate([x, p]) tensor = state_vector( mu, cov, normalize=False, cutoff=cutoff, hbar=2, check_purity=False, choi_r=choi_r, ) if sf_order: sf_indexing = tuple(chain.from_iterable([[i, i + l] for i in range(l)])) return tensor.transpose(sf_indexing) return tensor
[docs] def probabilities(mu, cov, cutoff, parallel=False, hbar=2.0, rtol=1e-05, atol=1e-08): r"""Generate the Fock space probabilities of a Gaussian state up to a Fock space cutoff. Args: mu (array): vector of means of length ``2*n_modes`` cov (array): covariance matrix of shape ``[2*n_modes, 2*n_modes]`` cutoff (int): cutoff in Fock space parallel (bool): if ``True``, uses ``dask`` for parallelization instead of OpenMP hbar (float): value of :math:`\hbar` in the commutation relation :math;`[\hat{x}, \hat{p}]=i\hbar` rtol (float): the relative tolerance parameter used in ``np.allclose`` atol (float): the absolute tolerance parameter used in ``np.allclose`` Returns: (array): Fock space probabilities up to cutoff. The shape of this tensor is ``[cutoff]*num_modes``. """ if is_pure_cov( cov, hbar=hbar, rtol=rtol, atol=atol ): # Check if the covariance matrix cov is pure return np.abs(state_vector(mu, cov, cutoff=cutoff, hbar=hbar, check_purity=False)) ** 2 num_modes = len(mu) // 2 if parallel: compute_list = [] # create a list of parallelizable computations for i in product(range(cutoff), repeat=num_modes): compute_list.append(dask.delayed(density_matrix_element)(mu, cov, i, i, hbar=hbar)) probs = np.maximum( 0.0, np.real_if_close(dask.compute(*compute_list, scheduler="processes")) ).reshape([cutoff] * num_modes) # maximum is needed because sometimes a probability is very close to zero from below else: probs = np.zeros([cutoff] * num_modes) for i in product(range(cutoff), repeat=num_modes): probs[i] = np.maximum( 0.0, np.real_if_close(density_matrix_element(mu, cov, i, i, hbar=hbar)) ) # maximum is needed because sometimes a probability is very close to zero from below return probs
[docs] @jit(nopython=True) def loss_mat(eta, cutoff): # pragma: no cover r"""Constructs a binomial loss matrix with transmission eta up to n photons. Args: eta (float): Transmission coefficient. ``eta=0.0`` corresponds to complete loss and ``eta=1.0`` corresponds to no loss. cutoff (int): cutoff in Fock space. Returns: array: :math:`n\times n` matrix representing the loss. """ # If full transmission return the identity if eta < 0.0 or eta > 1.0: raise ValueError("The transmission parameter eta should be a number between 0 and 1.") if eta == 1.0: return np.identity(cutoff) # Otherwise construct the matrix elements recursively lm = np.zeros((cutoff, cutoff)) mu = 1.0 - eta lm[:, 0] = mu ** (np.arange(cutoff)) for i in range(cutoff): for j in range(1, i + 1): lm[i, j] = lm[i, j - 1] * (eta / mu) * (i - j + 1) / (j) return lm
[docs] def update_probabilities_with_loss(etas, probs): """Given a list of transmissivities a tensor of probabilitites, calculate an updated tensor of probabilities after loss is applied. Args: etas (list): List of transmissitivities describing the loss in each of the modes probs (array): Array of probabilitites in the different modes Returns: array: List of loss-updated probabilities with the same shape as probs. """ probs_shape = probs.shape if len(probs_shape) != len(etas): raise ValueError( "The list of transmission etas and the tensor of probabilities probs have incompatible dimensions." ) alphabet = "abcdefghijklmnopqrstuvwxyz" cutoff = probs_shape[0] for i, eta in enumerate(etas): einstrings = "ij,{}i...->{}j...".format(alphabet[:i], alphabet[:i]) qein = np.zeros_like(probs) qein = np.einsum(einstrings, loss_mat(eta, cutoff), probs) probs = np.copy(qein) return qein
@jit(nopython=True) def _update_1d(probs, one_d, cutoff): # pragma: no cover """Performs a convolution of the two arrays. The first one does not need to be one dimensional, which is why we do not use ``np.convolve``. Args: probs (array): (multidimensional) array one_d (array): one dimensional array cutoff (int): cutoff in Fock space for the first array Returns: (array): the convolution of the two arrays, with the same shape as ``probs``. """ new_d = np.zeros_like(probs) for i in range(cutoff): for j in range(min(i + 1, len(one_d))): new_d[i] += probs[i - j] * one_d[j] return new_d
[docs] def update_probabilities_with_noise(probs_noise, probs): """Given a list of noise probability distributions for each of the modes and a tensor of probabilitites, calculate an updated tensor of probabilities after noise is applied. Args: probs_noise (list): List of probability distributions describing the noise in each of the modes probs (array): Array of probabilitites in the different modes Returns: array: List of noise-updated probabilities with the same shape as probs. """ probs_shape = probs.shape num_modes = len(probs_shape) cutoff = probs_shape[0] if num_modes != len(probs_noise): raise ValueError( "The list of probability distributions probs_noise and the tensor of probabilities probs have incompatible dimensions." ) for k in range(num_modes): # update one mode at a time perm = np.arange(num_modes) perm[0] = k perm[k] = 0 one_d = probs_noise[k] probs_masked = np.transpose(probs, axes=perm) probs_masked = _update_1d(probs_masked, one_d, cutoff) probs = np.transpose(probs_masked, axes=perm) return probs
[docs] def find_classical_subsystem(cov, hbar=2, atol=1e-08): """Find the largest integer ``k`` so that subsystem in modes ``[0,1,...,k-1]`` is a classical state. Args: cov (array): a covariance matrix hbar (float): value of hbar in the uncertainty relation atol (float): the absolute tolerance parameter used when determining if the state is classical Returns: int: the largest k so that modes ``[0,1,...,k-1]`` are in a classical state. """ n, _ = cov.shape nmodes = n // 2 if is_classical_cov(cov, hbar=hbar, atol=atol): return nmodes k = 0 mu = np.zeros(n) is_classical = True while is_classical: _, Vk = reduced_gaussian(mu, cov, list(range(k + 1))) is_classical = is_classical_cov(Vk, hbar=hbar, atol=atol) k += 1 return k - 1
def _prefactor(mu, cov, hbar=2): r"""Returns the prefactor. .. math:: prefactor = \frac{e^{-\beta Q^{-1}\beta^*/2}}{n_1!\cdots n_m! \sqrt{|Q|}} Args: mu (array): length-:math:`2N` vector of mean values :math:`[\alpha,\alpha^*]` cov (array): length-:math:`2N` `xp`-covariance matrix Returns: float: the prefactor """ Q = Qmat(cov, hbar=hbar) beta = complex_to_real_displacements(mu, hbar=hbar) Qinv = np.linalg.inv(Q) return np.exp(-0.5 * beta @ Qinv @ beta.conj()) / np.sqrt(np.linalg.det(Q))
[docs] def tvd_cutoff_bounds(mu, cov, cutoff, hbar=2, check_is_valid_cov=True, rtol=1e-05, atol=1e-08): r"""Gives bounds of the total variation distance between the exact Gaussian Boson Sampling distribution extending to infinity in Fock space and the ones truncated by any value between 0 and the user provided cutoff. For the derivation see Appendix B of `'Exact simulation of Gaussian boson sampling in polynomial space and exponential time', Quesada and Arrazola <https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.2.023005>`_. Args: mu (array): vector of means of the Gaussian state cov (array): covariance matrix of the Gaussian state cutoff (int): cutoff in Fock space check_is_valid_cov (bool): verify that the covariance matrix is physical hbar (float): value of hbar in the uncertainty relation rtol (float): the relative tolerance parameter used in `np.allclose` atol (float): the absolute tolerance parameter used in `np.allclose` Returns: (array): values of the bound for different local Fock space dimensions up to cutoff """ if check_is_valid_cov: if not is_valid_cov(cov, hbar=hbar, rtol=rtol, atol=atol): raise ValueError("The input covariance matrix violates the uncertainty relation.") nmodes = cov.shape[0] // 2 bounds = np.zeros([cutoff]) for i in range(nmodes): mu_red, cov_red = reduced_state(mu, cov, [i]) ps = np.real_if_close(np.diag(density_matrix(mu_red, cov_red, cutoff=cutoff, hbar=hbar))) bounds += 1 - np.cumsum(ps) return bounds
[docs] def n_body_marginals(mean, cov, cutoff, n, hbar=2): r"""Calculates the first n-body marginals of a Gaussian state. For an M-mode Gaussian state there exists a photon number distribution with probability mass function :math:`p[i_0,i_1,\ldots, i_{M-1}]`. The function ``n_body_marginals`` calculates the first n-body marginals of the (all-mode) probability distribution :math:`p`. The :math:`n=1` marginals or single body marginals are simply the probability that mode :math:`k` has :math:`i` photons, i.e. :math:`p_k[i]`. For :math:`n=2` one obtains the two-body probabilities. For two modes :math:`k` and :math:`l` this is a two dimensional probability distribution :math:`p_{k,l}[i,j]`. Note that these marginals have interesting permutation properties, for example :math:`p_{k,l}[i,j] = p_{l,k}[j,i]`. The function provided here takes advantage of these symmetries to minimize the amount of calculations. The return of this function is a list of tensors where the first entry contains the one-body marginals of the :math:`M` modes (giving a tensor of shape ``(M, cutoff)``), the second entry contains the two-body marginals (giving a tensor of shape ``(M,M,cutoff, cutoff)``) and so on and so forth. To be clever about not calculating things that can be obtained by permutations it checks whether the index vector representing the modes is sorted. From the way ``itertools.product`` works we know that it will always produce a sorted index vector before generating any of its unordered permutations. Thus whenever the index vector is ordered we perform the numerical calculation. If it is an unsorted index vector it realizes, in the ``if`` statement, that it can be obtained by permuting the marginal distribution of something that has already been calculated. Args: mean (array): length-:math:`2N` quadrature displacement vector cov (array): length-:math:`2N` covariance matrix cutoff (int): cutoff in Fock space n (int): order of the correlations hbar (float): the value of :math:`\hbar` in the commutation relation :math:`[\x,\p]=i\hbar`. Returns: list[array]: List with arrays containing the :math:`1,..,n` body marginal distributions of the modes """ M = len(mean) if (M, M) != cov.shape: raise ValueError("The covariance matrix and vector of means have incompatible dimensions") if M % 2 != 0: raise ValueError("The vector of means is not of even dimensions") M = M // 2 if M < n: raise ValueError("The order of the correlations is higher than the number of modes") marginal = [np.zeros(([M] * i) + ([cutoff] * i)) for i in range(1, n + 1)] for ind in product(range(M), repeat=n): modes = list(set(ind)) acc = len(modes) - 1 if list(ind) == sorted(ind): sub_mean, sub_cov = reduced_state(mean, cov, modes) # this happens in phase space marginal[acc][tuple(modes)] = probabilities(sub_mean, sub_cov, cutoff, hbar=hbar) else: modes_usrt = list(OrderedDict.fromkeys(ind)) perm = np.argsort(modes_usrt) marginal[acc][tuple(modes_usrt)] = marginal[acc][tuple(modes)].transpose(perm) return marginal

Contents

Getting started

Background

The Walrus API