Source code for thewalrus.decompositions
# Copyright 2019 Xanadu Quantum Technologies Inc.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Decompositions
==============
**Module name:** :mod:`thewalrus.decompositions`
.. currentmodule:: thewalrus.decompositions
This module implements common shared matrix decompositions that are
used to perform gate decompositions.
Summary
-------
.. autosummary::
williamson
symplectic_eigenvals
blochmessiah
Code details
------------
"""
import numpy as np
from scipy.linalg import block_diag, sqrtm, schur
from thewalrus.symplectic import sympmat
from thewalrus.quantum.gaussian_checks import is_symplectic
[docs]def williamson(V, rtol=1e-05, atol=1e-08):
r"""Williamson decomposition of positive-definite (real) symmetric matrix.
See `this thread <https://math.stackexchange.com/questions/1171842/finding-the-symplectic-matrix-in-williamsons-theorem/2682630#2682630>`_
and the `Williamson decomposition documentation <https://strawberryfields.ai/photonics/conventions/decompositions.html#williamson-decomposition>`_
Args:
V (array[float]): positive definite symmetric (real) matrix
rtol (float): the relative tolerance parameter used in ``np.allclose``
atol (float): the absolute tolerance parameter used in ``np.allclose``
Returns:
tuple[array,array]: ``(Db, S)`` where ``Db`` is a diagonal matrix
and ``S`` is a symplectic matrix such that :math:`V = S^T Db S`
"""
(n, m) = V.shape
if n != m:
raise ValueError("The input matrix is not square")
if not np.allclose(V, V.T, rtol=rtol, atol=atol):
raise ValueError("The input matrix is not symmetric")
if n % 2 != 0:
raise ValueError("The input matrix must have an even number of rows/columns")
n = n // 2
omega = sympmat(n)
vals = np.linalg.eigvalsh(V)
for val in vals:
if val <= 0:
raise ValueError("Input matrix is not positive definite")
Mm12 = sqrtm(np.linalg.inv(V)).real
r1 = Mm12 @ omega @ Mm12
s1, K = schur(r1)
X = np.array([[0, 1], [1, 0]])
I = np.identity(2)
seq = []
# In what follows I construct a permutation matrix p so that the Schur matrix has
# only positive elements above the diagonal
# Also the Schur matrix uses the x_1,p_1, ..., x_n,p_n ordering thus I permute using perm
# to go to the ordering x_1, ..., x_n, p_1, ... , p_n
for i in range(n):
if s1[2 * i, 2 * i + 1] > 0:
seq.append(I)
else:
seq.append(X)
perm = np.array([2 * i for i in range(n)] + [2 * i + 1 for i in range(n)])
p = block_diag(*seq)
Kt = K @ p
Ktt = Kt[:, perm]
s1t = p @ s1 @ p
dd = [1 / s1t[2 * i, 2 * i + 1] for i in range(n)]
Db = np.diag(dd + dd)
S = Mm12 @ Ktt @ sqrtm(Db)
return Db, np.linalg.inv(S).T
[docs]def symplectic_eigenvals(cov):
r"""Returns the symplectic eigenvalues of a covariance matrix.
Args:
cov (array): a covariance matrix
Returns:
(array): symplectic eigenvalues
"""
M = int(len(cov) / 2)
D, _ = williamson(cov)
return np.diag(D)[:M]
[docs]def blochmessiah(S):
"""Returns the Bloch-Messiah decomposition of a symplectic matrix S = uff @ dff @ vff
where uff and vff are orthogonal symplectic matrices and dff is a diagonal matrix
of the form diag(d1,d2,...,dn,d1^-1, d2^-1,...,dn^-1),
Args:
S (array[float]): 2N x 2N real symplectic matrix
Returns:
tuple(array[float], : orthogonal symplectic matrix uff
array[float], : diagonal matrix dff
array[float]) : orthogonal symplectic matrix vff
"""
N, _ = S.shape
if not is_symplectic(S):
raise ValueError("Input matrix is not symplectic.")
# Changing Basis
R = (1 / np.sqrt(2)) * np.block(
[[np.eye(N // 2), 1j * np.eye(N // 2)], [np.eye(N // 2), -1j * np.eye(N // 2)]]
)
Sc = R @ S @ np.conjugate(R).T
# Polar Decomposition
u1, d1, v1 = np.linalg.svd(Sc)
Sig = u1 @ np.diag(d1) @ np.conjugate(u1).T
Unitary = u1 @ v1
# Blocks of Unitary and Hermitian symplectics
alpha = Unitary[0 : N // 2, 0 : N // 2]
beta = Sig[0 : N // 2, N // 2 : N]
# Bloch-Messiah in this Basis
d2, takagibeta = takagi(beta)
sval = np.arcsinh(d2)
uf = block_diag(takagibeta, takagibeta.conj())
blc = np.conjugate(takagibeta).T @ alpha
vf = block_diag(blc, blc.conj())
df = np.block(
[
[np.diag(np.cosh(sval)), np.diag(np.sinh(sval))],
[np.diag(np.sinh(sval)), np.diag(np.cosh(sval))],
]
)
# Rotating Back to Original Basis
uff = np.conjugate(R).T @ uf @ R
vff = np.conjugate(R).T @ vf @ R
dff = np.conjugate(R).T @ df @ R
dff = np.real_if_close(dff)
vff = np.real_if_close(vff)
uff = np.real_if_close(uff)
return uff, dff, vff
[docs]def takagi(A, svd_order=True):
r"""Autonne-Takagi decomposition of a complex symmetric (not Hermitian!) matrix.
Note that the input matrix is internally symmetrized. If the input matrix is indeed symmetric this leaves it unchanged.
See `Carl Caves note. <http://info.phys.unm.edu/~caves/courses/qinfo-s17/lectures/polarsingularAutonne.pdf>`_
Args:
A (array): square, symmetric matrix
svd_order (boolean): whether to return result by ordering the singular values of ``A`` in descending (``True``) or ascending (``False``) order.
Returns:
tuple[array, array]: (r, U), where r are the singular values,
and U is the Autonne-Takagi unitary, such that :math:`A = U \diag(r) U^T`.
"""
n, m = A.shape
if n != m:
raise ValueError("The input matrix is not square")
# Here we force symmetrize the matrix
A = 0.5 * (A + A.T)
A = np.real_if_close(A)
if np.allclose(A, 0):
return np.zeros(n), np.eye(n)
if np.isrealobj(A):
# If the matrix A is real one can be more clever and use its eigendecomposition
ls, U = np.linalg.eigh(A)
U = U / np.exp(1j * np.angle(U)[0])
vals = np.abs(ls) # These are the Takagi eigenvalues
phases = -np.ones(vals.shape[0], dtype=np.complex128)
for j, l in enumerate(ls):
if np.allclose(l, 0) or l > 0:
phases[j] = 1
phases = np.sqrt(phases)
Uc = U @ np.diag(phases) # One needs to readjust the phases
signs = np.sign(Uc.real)[0]
for k, s in enumerate(signs):
if np.allclose(s, 0):
signs[k] = 1
Uc = np.real_if_close(Uc / signs)
list_vals = [(vals[i], i) for i in range(len(vals))]
# And also rearrange the unitary and values so that they are decreasingly ordered
list_vals.sort(reverse=svd_order)
sorted_ls, permutation = zip(*list_vals)
return np.array(sorted_ls), Uc[:, np.array(permutation)]
phi = np.angle(A[0, 0])
Amr = np.real_if_close(np.exp(-1j * phi) * A)
if np.isrealobj(Amr):
vals, U = takagi(Amr, svd_order=svd_order)
return vals, U * np.exp(1j * phi / 2)
u, d, v = np.linalg.svd(A)
U = u @ sqrtm((v @ np.conjugate(u)).T)
# The line above could be simplifed to the line below if the product v @ np.conjugate(u) is diagonal
# Which it should be according to Caves http://info.phys.unm.edu/~caves/courses/qinfo-s17/lectures/polarsingularAutonne.pdf
# U = u * np.sqrt(0j + np.diag(v @ np.conjugate(u)))
# This however breaks test_degenerate
if svd_order is False:
return d[::-1], U[:, ::-1]
return d, U
_modules/thewalrus/decompositions
Download Python script
Download Notebook
View on GitHub