Source code for thewalrus.quantum

# Copyright 2019 Xanadu Quantum Technologies Inc.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Quantum algorithms
==================

.. currentmodule:: thewalrus.quantum

This submodule provides access to various utility functions that act on Gaussian
quantum states.

For more details on how the hafnian relates to various properties of Gaussian quantum
states, see:

* Kruse, R., Hamilton, C. S., Sansoni, L., Barkhofen, S., Silberhorn, C., & Jex, I.
  "Detailed study of Gaussian boson sampling." `Physical Review A 100, 032326 (2019)
  <https://journals.aps.org/pra/abstract/10.1103/PhysRevA.100.032326>`_

* Hamilton, C. S., Kruse, R., Sansoni, L., Barkhofen, S., Silberhorn, C., & Jex, I.
  "Gaussian boson sampling." `Physical Review Letters, 119(17), 170501 (2017)
  <https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.119.170501>`_

* Quesada, N.
  "Franck-Condon factors by counting perfect matchings of graphs with loops."
  `Journal of Chemical Physics 150, 164113 (2019) <https://aip.scitation.org/doi/10.1063/1.5086387>`_

* Quesada, N., Helt, L. G., Izaac, J., Arrazola, J. M., Shahrokhshahi, R., Myers, C. R., & Sabapathy, K. K.
  "Simulating realistic non-Gaussian state preparation." `Physical Review A 100, 022341 (2019)
  <https://journals.aps.org/pra/abstract/10.1103/PhysRevA.100.022341>`_


Fock states and tensors
-----------------------

.. autosummary::

    pure_state_amplitude
    state_vector
    density_matrix_element
    density_matrix
    fock_tensor
    probabilities
    update_probabilities_with_loss
    update_probabilities_with_noise
    fidelity

Details
^^^^^^^

.. autofunction::
    pure_state_amplitude

.. autofunction::
    state_vector

.. autofunction::
    density_matrix_element

.. autofunction::
    density_matrix

.. autofunction::
    fock_tensor

.. autofunction::
    probabilities

.. autofunction::
    update_probabilities_with_loss

.. autofunction::
    update_probabilities_with_noise

Utility functions
-----------------

.. autosummary::

    reduced_gaussian
    Xmat
    Qmat
    Covmat
    Amat
    Beta
    Means
    prefactor
    find_scaling_adjacency_matrix
    mean_number_of_clicks
    find_scaling_adjacency_matrix_torontonian
    gen_Qmat_from_graph
    photon_number_mean
    photon_number_mean_vector
    photon_number_covar
    photon_number_covmat
    is_valid_cov
    is_pure_cov
    is_classical_cov
    total_photon_num_dist_pure_state
    gen_single_mode_dist
    gen_multi_mode_dist


Details
^^^^^^^
"""
# pylint: disable=too-many-arguments
from itertools import count, product, chain

import numpy as np
from scipy.optimize import root_scalar
from scipy.special import factorial as fac
from scipy.stats import nbinom
from scipy.linalg import sqrtm
from numba import jit

from thewalrus.symplectic import expand, sympmat, is_symplectic
from thewalrus.libwalrus import interferometer, interferometer_real

from ._hafnian import hafnian, hafnian_repeated, reduction
from ._hermite_multidimensional import hermite_multidimensional, hafnian_batched


[docs]def reduced_gaussian(mu, cov, modes): r""" Returns the vector of means and the covariance matrix of the specified modes. Args: mu (array): a length-:math:`2N` ``np.float64`` vector of means. cov (array): a :math:`2N\times 2N` ``np.float64`` covariance matrix representing an :math:`N` mode quantum state. modes (int of Sequence[int]): indices of the requested modes Returns: tuple (means, cov): where means is an array containing the vector of means, and cov is a square array containing the covariance matrix. """ N = len(mu) // 2 # reduce rho down to specified subsystems if isinstance(modes, int): modes = [modes] if np.any(np.array(modes) > N): raise ValueError("Provided mode is larger than the number of subsystems.") if len(modes) == N: # reduced state is full state return mu, cov ind = np.concatenate([np.array(modes), np.array(modes) + N]) rows = ind.reshape(-1, 1) cols = ind.reshape(1, -1) return mu[ind], cov[rows, cols]
[docs]def Xmat(N): r"""Returns the matrix :math:`X_n = \begin{bmatrix}0 & I_n\\ I_n & 0\end{bmatrix}` Args: N (int): positive integer Returns: array: :math:`2N\times 2N` array """ I = np.identity(N) O = np.zeros_like(I) X = np.block([[O, I], [I, O]]) return X
[docs]def Qmat(cov, hbar=2): r"""Returns the :math:`Q` Husimi matrix of the Gaussian state. Args: cov (array): :math:`2N\times 2N xp-` Wigner covariance matrix hbar (float): the value of :math:`\hbar` in the commutation relation :math:`[\x,\p]=i\hbar`. Returns: array: the :math:`Q` matrix. """ # number of modes N = len(cov) // 2 I = np.identity(N) x = cov[:N, :N] * 2 / hbar xp = cov[:N, N:] * 2 / hbar p = cov[N:, N:] * 2 / hbar # the (Hermitian) matrix elements <a_i^\dagger a_j> aidaj = (x + p + 1j * (xp - xp.T) - 2 * I) / 4 # the (symmetric) matrix elements <a_i a_j> aiaj = (x - p + 1j * (xp + xp.T)) / 4 # calculate the covariance matrix sigma_Q appearing in the Q function: # Q(alpha) = exp[-(alpha-beta).sigma_Q^{-1}.(alpha-beta)/2]/|sigma_Q| Q = np.block([[aidaj, aiaj.conj()], [aiaj, aidaj.conj()]]) + np.identity(2 * N) return Q
[docs]def Covmat(Q, hbar=2): r"""Returns the Wigner covariance matrix in the :math:`xp`-ordering of the Gaussian state. This is the inverse function of Qmat. Args: Q (array): :math:`2N\times 2N` Husimi Q matrix hbar (float): the value of :math:`\hbar` in the commutation relation :math:`[\x,\p]=i\hbar`. Returns: array: the :math:`xp`-ordered covariance matrix in the xp-ordering. """ # number of modes n = len(Q) // 2 I = np.identity(n) N = Q[0:n, 0:n] - I M = Q[n : 2 * n, 0:n] mm11a = 2 * (N.real + M.real) + np.identity(n) mm22a = 2 * (N.real - M.real) + np.identity(n) mm12a = 2 * (M.imag + N.imag) cov = np.block([[mm11a, mm12a], [mm12a.T, mm22a]]) return (hbar / 2) * cov
[docs]def Amat(cov, hbar=2, cov_is_qmat=False): r"""Returns the :math:`A` matrix of the Gaussian state whose hafnian gives the photon number probabilities. Args: cov (array): :math:`2N\times 2N` covariance matrix hbar (float): the value of :math:`\hbar` in the commutation relation :math:`[\x,\p]=i\hbar`. cov_is_qmat (bool): if ``True``, it is assumed that ``cov`` is in fact the Q matrix. Returns: array: the :math:`A` matrix. """ # number of modes N = len(cov) // 2 X = Xmat(N) # inverse Q matrix if cov_is_qmat: Q = cov else: Q = Qmat(cov, hbar=hbar) Qinv = np.linalg.inv(Q) # calculate Hamilton's A matrix: A = X.(I-Q^{-1})* A = X @ (np.identity(2 * N) - Qinv).conj() return A
[docs]def Beta(mu, hbar=2): r"""Returns the vector of complex displacements and conjugate displacements. Args: mu (array): length-:math:`2N` means vector hbar (float): the value of :math:`\hbar` in the commutation relation :math:`[\x,\p]=i\hbar`. Returns: array: the expectation values :math:`[\langle a_1\rangle, \langle a_2\rangle,\dots,\langle a_N\rangle, \langle a^\dagger_1\rangle, \dots, \langle a^\dagger_N\rangle]` """ N = len(mu) // 2 # mean displacement of each mode alpha = (mu[:N] + 1j * mu[N:]) / np.sqrt(2 * hbar) # the expectation values (<a_1>, <a_2>,...,<a_N>, <a^\dagger_1>, ..., <a^\dagger_N>) return np.concatenate([alpha, alpha.conj()])
[docs]def Means(beta, hbar=2): r"""Returns the vector of real quadrature displacements. Args: beta (array): length-:math:`2N` means bivector hbar (float): the value of :math:`\hbar` in the commutation relation :math:`[\x,\p]=i\hbar`. Returns: array: the quadrature expectation values :math:`[\langle q_1\rangle, \langle q_2\rangle,\dots,\langle q_N\rangle, \langle p_1\rangle, \dots, \langle p_N\rangle]` """ N = len(beta) // 2 alpha = beta[0:N] return np.sqrt(2 * hbar) * np.concatenate([alpha.real, alpha.imag])
[docs]def prefactor(mu, cov, hbar=2): r"""Returns the prefactor. .. math:: prefactor = \frac{e^{-\beta Q^{-1}\beta^*/2}}{n_1!\cdots n_m! \sqrt{|Q|}} Args: mu (array): length-:math:`2N` vector of mean values :math:`[\alpha,\alpha^*]` cov (array): length-:math:`2N` `xp`-covariance matrix Returns: float: the prefactor """ Q = Qmat(cov, hbar=hbar) beta = Beta(mu, hbar=hbar) Qinv = np.linalg.inv(Q) return np.exp(-0.5 * beta @ Qinv @ beta.conj()) / np.sqrt(np.linalg.det(Q))
[docs]def density_matrix_element(mu, cov, i, j, include_prefactor=True, tol=1e-10, hbar=2): r"""Returns the :math:`\langle i | \rho | j \rangle` element of the density matrix of a Gaussian state defined by covariance matrix cov. Args: mu (array): length-:math:`2N` quadrature displacement vector cov (array): length-:math:`2N` covariance matrix i (list): list of density matrix rows j (list): list of density matrix columns include_prefactor (bool): if ``True``, the prefactor is automatically calculated used to scale the result. tol (float): tolerance for determining if displacement is negligible hbar (float): the value of :math:`\hbar` in the commutation relation :math:`[\x,\p]=i\hbar`. Returns: complex: the density matrix element """ rpt = i + j beta = Beta(mu, hbar=hbar) A = Amat(cov, hbar=hbar) if np.linalg.norm(beta) < tol: # no displacement if np.prod([k + 1 for k in rpt]) ** (1 / len(rpt)) < 3: A_rpt = reduction(A, rpt) haf = hafnian(A_rpt) else: haf = hafnian_repeated(A, rpt) else: # replace the diagonal of A with gamma gamma = beta.conj() - A @ beta if np.prod([k + 1 for k in rpt]) ** (1 / len(rpt)) < 3: A_rpt = reduction(A, rpt) np.fill_diagonal(A_rpt, reduction(gamma, rpt)) haf = hafnian(A_rpt, loop=True) else: haf = hafnian_repeated(A, rpt, mu=gamma, loop=True) if include_prefactor: haf *= prefactor(mu, cov, hbar=hbar) return haf / np.sqrt(np.prod(fac(rpt)))
[docs]def density_matrix(mu, cov, post_select=None, normalize=False, cutoff=5, hbar=2): r"""Returns the density matrix of a (PNR post-selected) Gaussian state. The resulting density matrix will have shape .. math:: \underbrace{D\times D \times \cdots \times D}_{2M} where :math:`D` is the Fock space cutoff, and :math:`M` is the number of *non* post-selected modes, i.e. ``M = len(mu)//2 - len(post_select)``. Note that we use the Strawberry Fields convention for indexing the density matrix; the first two dimensions correspond to subsystem 1, the second two dimensions correspond to subsystem 2, etc. If post_select is None then the density matrix elements are calculated using the multidimensional Hermite polynomials which provide a significantly faster evaluation. Args: mu (array): length-:math:`2N` means vector in xp-ordering cov (array): :math:`2N\times 2N` covariance matrix in xp-ordering post_select (dict): dictionary containing the post-selected modes, of the form ``{mode: value}``. If post_select is None the whole non post-selected density matrix is calculated directly using (multidimensional) Hermite polynomials, which is significantly faster than calculating one hafnian at a time. normalize (bool): If ``True``, a post-selected density matrix is re-normalized. cutoff (dim): the final length (i.e., Hilbert space dimension) of each mode in the density matrix. hbar (float): the value of :math:`\hbar` in the commutation relation :math:`[\x,\p]=i\hbar`. Returns: np.array[complex]: the density matrix of the Gaussian state """ N = len(mu) // 2 pref = prefactor(mu, cov, hbar=hbar) if post_select is None: A = Amat(cov, hbar=hbar).conj() sf_order = tuple(chain.from_iterable([[i, i + N] for i in range(N)])) if np.allclose(mu, np.zeros_like(mu)): tensor = np.real_if_close(pref) * hermite_multidimensional( -A, cutoff, renorm=True, modified=True ) return tensor.transpose(sf_order) beta = Beta(mu, hbar=hbar) y = beta - A @ beta.conj() tensor = np.real_if_close(pref) * hermite_multidimensional( -A, cutoff, y=y, renorm=True, modified=True ) return tensor.transpose(sf_order) M = N - len(post_select) rho = np.zeros([cutoff] * (2 * M), dtype=np.complex128) for idx in product(range(cutoff), repeat=2 * M): el = [] counter = count(0) modes = (np.arange(2 * N) % N).tolist() el = [post_select[i] if i in post_select else idx[next(counter)] for i in modes] el = np.array(el).reshape(2, -1) el0 = el[0].tolist() el1 = el[1].tolist() sf_idx = np.array(idx).reshape(2, -1) sf_el = tuple(sf_idx[::-1].T.flatten()) rho[sf_el] = density_matrix_element(mu, cov, el0, el1, include_prefactor=False, hbar=hbar) rho *= pref if normalize: # construct the standard 2D density matrix, and take the trace new_ax = np.arange(2 * M).reshape([M, 2]).T.flatten() tr = np.trace(rho.transpose(new_ax).reshape([cutoff ** M, cutoff ** M])).real # renormalize rho /= tr return rho
[docs]def pure_state_amplitude(mu, cov, i, include_prefactor=True, tol=1e-10, hbar=2, check_purity=True): r"""Returns the :math:`\langle i | \psi\rangle` element of the state ket of a Gaussian state defined by covariance matrix cov. Args: mu (array): length-:math:`2N` quadrature displacement vector cov (array): length-:math:`2N` covariance matrix i (list): list of amplitude elements include_prefactor (bool): if ``True``, the prefactor is automatically calculated used to scale the result. tol (float): tolerance for determining if displacement is negligible hbar (float): the value of :math:`\hbar` in the commutation relation :math:`[\x,\p]=i\hbar`. check_purity (bool): if ``True``, the purity of the Gaussian state is checked before calculating the state vector. Returns: complex: the pure state amplitude """ if check_purity: if not is_pure_cov(cov, hbar=hbar, rtol=1e-05, atol=1e-08): raise ValueError("The covariance matrix does not correspond to a pure state") rpt = i beta = Beta(mu, hbar=hbar) Q = Qmat(cov, hbar=hbar) A = Amat(cov, hbar=hbar) (n, _) = cov.shape N = n // 2 B = A[0:N, 0:N].conj() alpha = beta[0:N] if np.linalg.norm(alpha) < tol: # no displacement if np.prod([k + 1 for k in rpt]) ** (1 / len(rpt)) < 3: B_rpt = reduction(B, rpt) haf = hafnian(B_rpt) else: haf = hafnian_repeated(B, rpt) else: gamma = alpha - B @ np.conj(alpha) if np.prod([k + 1 for k in rpt]) ** (1 / len(rpt)) < 3: B_rpt = reduction(B, rpt) np.fill_diagonal(B_rpt, reduction(gamma, rpt)) haf = hafnian(B_rpt, loop=True) else: haf = hafnian_repeated(B, rpt, mu=gamma, loop=True) if include_prefactor: pref = np.exp(-0.5 * (np.linalg.norm(alpha) ** 2 - alpha @ B @ alpha)) haf *= pref return haf / np.sqrt(np.prod(fac(rpt)) * np.sqrt(np.linalg.det(Q)))
[docs]def state_vector( mu, cov, post_select=None, normalize=False, cutoff=5, hbar=2, check_purity=True, **kwargs ): r"""Returns the state vector of a (PNR post-selected) Gaussian state. The resulting density matrix will have shape .. math:: \underbrace{D\times D \times \cdots \times D}_M where :math:`D` is the Fock space cutoff, and :math:`M` is the number of *non* post-selected modes, i.e. ``M = len(mu)//2 - len(post_select)``. If post_select is None then the density matrix elements are calculated using the multidimensional Hermite polynomials which provide a significantly faster evaluation. Args: mu (array): length-:math:`2N` means vector in xp-ordering cov (array): :math:`2N\times 2N` covariance matrix in xp-ordering post_select (dict): dictionary containing the post-selected modes, of the form ``{mode: value}``. normalize (bool): If ``True``, a post-selected density matrix is re-normalized. cutoff (dim): the final length (i.e., Hilbert space dimension) of each mode in the density matrix. hbar (float): the value of :math:`\hbar` in the commutation relation :math:`[\x,\p]=i\hbar`. check_purity (bool): if ``True``, the purity of the Gaussian state is checked before calculating the state vector. Keyword Args: choi_r (float or None): Value of the two-mode squeezing parameter used in Choi-Jamiolkoski trick in :func:`~.fock_tensor`. This keyword argument should only be used when ``state_vector`` is called by :func:`~.fock_tensor`. Returns: np.array[complex]: the state vector of the Gaussian state """ if check_purity: if not is_pure_cov(cov, hbar=hbar, rtol=1e-05, atol=1e-08): raise ValueError("The covariance matrix does not correspond to a pure state") beta = Beta(mu, hbar=hbar) A = Amat(cov, hbar=hbar) Q = Qmat(cov, hbar=hbar) (n, _) = cov.shape N = n // 2 B = A[0:N, 0:N] alpha = beta[0:N] gamma = np.conj(alpha) - B @ alpha prefexp = -0.5 * (np.linalg.norm(alpha) ** 2 - alpha @ B @ alpha) pref = np.exp(prefexp.conj()) if post_select is None: choi_r = kwargs.get("choi_r", None) if choi_r is None: denom = np.sqrt(np.sqrt(np.linalg.det(Q).real)) else: rescaling = np.concatenate( [np.ones([N // 2]), (1.0 / np.tanh(choi_r)) * np.ones([N // 2])] ) B = np.diag(rescaling) @ B @ np.diag(rescaling) gamma = rescaling * gamma denom = np.sqrt(np.sqrt(np.linalg.det(Q / np.cosh(choi_r)).real)) psi = ( np.real_if_close(pref) * hafnian_batched(B.conj(), cutoff, mu=gamma.conj(), renorm=True) / denom ) else: M = N - len(post_select) psi = np.zeros([cutoff] * (M), dtype=np.complex128) for idx in product(range(cutoff), repeat=M): el = [] counter = count(0) modes = (np.arange(N)).tolist() el = [post_select[i] if i in post_select else idx[next(counter)] for i in modes] psi[idx] = pure_state_amplitude( mu, cov, el, check_purity=False, include_prefactor=False, hbar=hbar ) psi = psi * pref if normalize: norm = np.sqrt(np.sum(np.abs(psi) ** 2)) psi = psi / norm return psi
[docs]def mean_number_of_clicks(A): r""" Given an adjacency matrix this function calculates the mean number of clicks. For this to make sense the user must provide a matrix with singular values less than or equal to one. See Appendix A.3 of <https://arxiv.org/abs/1902.00462>`_ by Banchi et al. Args: A (array): rescaled adjacency matrix Returns: float: mean number of clicks """ n, _ = A.shape idn = np.identity(n) X = np.block([[0 * idn, idn], [idn, 0 * idn]]) B = np.block([[A, 0 * A], [0 * A, np.conj(A)]]) Q = np.linalg.inv(np.identity(2 * n) - X @ B) meanc = 1.0 * n for i in range(n): det_val = np.real(Q[i, i]*Q[i+n, i+n] - Q[i+n, i]*Q[i, i+n]) meanc -= 1.0 / np.sqrt(det_val) return meanc
[docs]def find_scaling_adjacency_matrix_torontonian(A, c_mean): r""" Returns the scaling parameter by which the adjacency matrix A should be rescaled so that the Gaussian state that encodes it has give a mean number of clicks equal to ``c_mean`` when measured with threshold detectors. Args: A (array): adjacency matrix c_mean (float): mean photon number of the Gaussian state Returns: float: scaling parameter """ n, _ = A.shape if c_mean < 0 or c_mean > n: raise ValueError("The mean number of clicks should be smaller than the number of modes") vals = np.linalg.svd(A, compute_uv=False) localA = A / vals[0] # rescale the matrix so that the singular values are between 0 and 1. def cost(x): r""" Cost function giving the difference between the wanted number of clicks and the number of clicks at a given scaling value. It assumes that the adjacency matrix has been rescaled so that it has singular values between 0 and 1. Args: x (float): scaling value Return: float: difference between desired and obtained mean number of clicks """ if x >= 1.0: return c_mean - n if x <= 0: return c_mean return c_mean - mean_number_of_clicks(x * localA) res = root_scalar(cost, x0=0.5, bracket=(0.0, 1.0)) # Do the optimization if not res.converged: raise ValueError("The search for a scaling value failed") return res.root / vals[0]
[docs]def find_scaling_adjacency_matrix(A, n_mean): r""" Returns the scaling parameter by which the adjacency matrix A should be rescaled so that the Gaussian state that endodes it has a total mean photon number n_mean. Args: A (array): Adjacency matrix n_mean (float): Mean photon number of the Gaussian state Returns: float: Scaling parameter """ eps = 1e-10 ls = np.linalg.svd(A, compute_uv=False) max_sv = ls[0] a_lim = 0.0 b_lim = 1.0 / (eps + max_sv) x_init = 0.5 * b_lim if 1000 * eps >= max_sv: raise ValueError("The singular values of the matrix A are too small.") def mean_photon_number(x, vals): r""" Returns the mean number of photons in the Gaussian state that encodes the adjacency matrix x*A where vals are the singular values of A Args: x (float): Scaling parameter vals (array): Singular values of the matrix A Returns: n_mean: Mean photon number in the Gaussian state """ vals2 = (x * vals) ** 2 n = np.sum(vals2 / (1.0 - vals2)) return n # The following function is implicitly tested in test_find_scaling_adjacency_matrix def grad_mean_photon_number(x, vals): # pragma: no cover r""" Returns the gradient od the mean number of photons in the Gaussian state that encodes the adjacency matrix x*A with respect to x. vals are the singular values of A Args: x (float): Scaling parameter vals (array): Singular values of the matrix A Returns: d_n_mean: Derivative of the mean photon number in the Gaussian state with respect to x """ vals1 = vals * x dn = (2.0 / x) * np.sum((vals1 / (1 - vals1 ** 2)) ** 2) return dn f = lambda x: mean_photon_number(x, ls) - n_mean df = lambda x: grad_mean_photon_number(x, ls) res = root_scalar(f, fprime=df, x0=x_init, bracket=(a_lim, b_lim)) if not res.converged: raise ValueError("The search for a scaling value failed") return res.root
[docs]def gen_Qmat_from_graph(A, n_mean): r""" Returns the Qmat xp-covariance matrix associated to a graph with adjacency matrix :math:`A` and with mean photon number :math:`n_{mean}`. Args: A (array): a :math:`N\times N` ``np.float64`` (symmetric) adjacency matrix n_mean (float): mean photon number of the Gaussian state Returns: array: the :math:`2N\times 2N` Q matrix. """ n, m = A.shape if n != m: raise ValueError("Matrix must be square.") sc = find_scaling_adjacency_matrix(A, n_mean) Asc = sc * A A = np.block([[Asc, 0 * Asc], [0 * Asc, Asc.conj()]]) I = np.identity(2 * n) X = Xmat(n) Q = np.linalg.inv(I - X @ A) return Q
[docs]def photon_number_mean(mu, cov, j, hbar=2): r""" Calculate the mean photon number of mode j of a Gaussian state. Args: mu (array): vector of means of the Gaussian state using the ordering :math:`[q_1, q_2, \dots, q_n, p_1, p_2, \dots, p_n]` cov (array): the covariance matrix of the Gaussian state j (int): the j :sup:`th` mode hbar (float): the ``hbar`` convention used in the commutation relation :math:`[q, p]=i\hbar` Returns: float: the mean photon number in mode :math:`j`. """ num_modes = len(mu) // 2 return ( mu[j] ** 2 + mu[j + num_modes] ** 2 + cov[j, j] + cov[j + num_modes, j + num_modes] - hbar ) / (2 * hbar)
[docs]def photon_number_covar(mu, cov, j, k, hbar=2): r""" Calculate the variance/covariance of the photon number distribution of a Gaussian state. Implements the covariance matrix of the photon number distribution of a Gaussian state according to the Last two eq. of Part II. in `'Multidimensional Hermite polynomials and photon distribution for polymode mixed light', Dodonov et al. <https://journals.aps.org/pra/abstract/10.1103/PhysRevA.50.813>`_ .. math:: \sigma_{n_j n_j} &= \frac{1}{2}\left(T_j^2 - 2d_j - \frac{1}{2}\right) + \left<\mathbf{Q}_j\right>\mathcal{M}_j\left<\mathbf{Q}_j\right>, \\ \sigma_{n_j n_k} &= \frac{1}{2}\mathrm{Tr}\left(\Lambda_j \mathbf{M} \Lambda_k \mathbf{M}\right) + \frac{1}{2}\left<\mathbf{Q}\right>\Lambda_j \mathbf{M} \Lambda_k\left<\mathbf{Q}\right>, where :math:`T_j` and :math:`d_j` are the trace and the determinant of :math:`2 \times 2` matrix :math:`\mathcal{M}_j` whose elements coincide with the nonzero elements of matrix :math:`\mathbf{M}_j = \Lambda_j \mathbf{M} \Lambda_k` while the two-vector :math:`\mathbf{Q}_j` has the components :math:`(q_j, p_j)`. :math:`2N \times 2N` projector matrix :math:`\Lambda_j` has only two nonzero elements: :math:`\left(\Lambda_j\right)_{jj} = \left(\Lambda_j\right)_{j+N,j+N} = 1`. Note that the convention for ``mu`` used here differs from the one used in Dodonov et al., They both provide the same results in this particular case. Args: mu (array): vector of means of the Gaussian state using the ordering :math:`[q_1, q_2, \dots, q_n, p_1, p_2, \dots, p_n]` cov (array): the covariance matrix of the Gaussian state j (int): the j :sup:`th` mode k (int): the k :sup:`th` mode hbar (float): the ``hbar`` convention used in the commutation relation :math:`[q, p]=i\hbar` Returns: float: the covariance for the photon numbers at modes :math:`j` and :math:`k`. """ # renormalise the covariance matrix cov = cov / hbar N = len(mu) // 2 mu = np.array(mu) / np.sqrt(hbar) lambda_1 = np.zeros((2 * N, 2 * N)) lambda_1[j, j] = lambda_1[j + N, j + N] = 1 lambda_2 = np.zeros((2 * N, 2 * N)) lambda_2[k, k] = lambda_2[k + N, k + N] = 1 if j == k: idxs = ((j, j, j + N, j + N), (j, j + N, j, j + N)) M = (lambda_1 @ cov @ lambda_2)[idxs].reshape(2, 2) term_1 = (np.trace(M) ** 2 - 2 * np.linalg.det(M) - 0.5) / 2 term_2 = mu[[j, j + N]] @ M @ mu[[j, j + N]] else: term_1 = np.trace(lambda_1 @ cov @ lambda_2 @ cov) / 2 term_2 = (mu @ lambda_1 @ cov @ lambda_2 @ mu) / 2 return term_1 + term_2
[docs]def photon_number_covmat(mu, cov, hbar=2): r""" Calculate the covariance matrix of the photon number distribution of a Gaussian state. Args: mu (array): vector of means of the Gaussian state using the ordering :math:`[q_1, q_2, \dots, q_n, p_1, p_2, \dots, p_n]` cov (array): the covariance matrix of the Gaussian state hbar (float): the ``hbar`` convention used in the commutation relation :math:`[q, p]=i\hbar` Returns: array: the covariance matrix of the photon number distribution """ N = len(mu) // 2 pnd_cov = np.zeros((N, N)) for i in range(N): for j in range(i+1): pnd_cov[i][j] = photon_number_covar(mu, cov, i, j, hbar=hbar) pnd_cov[j][i] = pnd_cov[i][j] return pnd_cov
[docs]def photon_number_mean_vector(mu, cov, hbar=2): r""" Calculate the mean photon number of each of the modes in a Gaussian state Args: mu (array): vector of means of the Gaussian state using the ordering :math:`[q_1, q_2, \dots, q_n, p_1, p_2, \dots, p_n]` cov (array): the covariance matrix of the Gaussian state hbar (float): the ``hbar`` convention used in the commutation relation :math:`[q, p]=i\hbar` Returns: array: the vector of means of the photon number distribution """ N = len(mu) // 2 return np.array([photon_number_mean(mu, cov, j, hbar=hbar) for j in range(N)])
[docs]def is_valid_cov(cov, hbar=2, rtol=1e-05, atol=1e-08): r""" Checks if the covariance matrix is a valid quantum covariance matrix. Args: cov (array): a covariance matrix hbar (float): value of hbar in the uncertainty relation rtol (float): the relative tolerance parameter used in `np.allclose` atol (float): the absolute tolerance parameter used in `np.allclose` Returns: (bool): whether the given covariance matrix is a valid covariance matrix """ (n, m) = cov.shape if n != m: # raise ValueError("The input matrix must be square") return False if not np.allclose(cov, np.transpose(cov), rtol=rtol, atol=atol): # raise ValueError("The input matrix is not symmetric") return False if n % 2 != 0: # raise ValueError("The input matrix is of even dimension") return False nmodes = n // 2 vals = np.linalg.eigvalsh(cov + 0.5j * hbar * sympmat(nmodes)) vals[np.abs(vals) < atol] = 0.0 if np.all(vals >= 0): # raise ValueError("The input matrix violates the uncertainty relation") return True return False
[docs]def is_pure_cov(cov, hbar=2, rtol=1e-05, atol=1e-08): r""" Checks if the covariance matrix is a valid quantum covariance matrix that corresponds to a quantum pure state Args: cov (array): a covariance matrix hbar (float): value of hbar in the uncertainty relation rtol (float): the relative tolerance parameter used in `np.allclose` atol (float): the absolute tolerance parameter used in `np.allclose` Returns: (bool): whether the given covariance matrix corresponds to a pure state """ if is_valid_cov(cov, hbar=hbar, rtol=rtol, atol=atol): purity = 1 / np.sqrt(np.linalg.det(2 * cov / hbar)) if np.allclose(purity, 1.0, rtol=rtol, atol=atol): return True return False
[docs]def is_classical_cov(cov, hbar=2, atol=1e-08): r""" Checks if the covariance matrix can be efficiently sampled. Args: cov (array): a covariance matrix hbar (float): value of hbar in the uncertainty relation Returns: (bool): whether the given covariance matrix corresponds to a classical state """ if is_valid_cov(cov, hbar=hbar, atol=atol): (n, _) = cov.shape vals = np.linalg.eigvalsh(cov - 0.5 * hbar * np.identity(n)) vals[np.abs(vals) < atol] = 0.0 if np.all(vals >= 0): return True return False
[docs]def gen_single_mode_dist(s, cutoff=50, N=1): """Generate the photon number distribution of :math:`N` identical single mode squeezed states. Args: s (float): squeezing parameter cutoff (int): Fock cutoff N (float): number of squeezed states Returns: (array): Photon number distribution """ r = 0.5 * N q = 1.0 - np.tanh(s) ** 2 N = cutoff // 2 ps_tot = np.zeros(cutoff) if cutoff % 2 == 0: ps = nbinom.pmf(np.arange(N), p=q, n=r) ps_tot[0::2] = ps else: ps = nbinom.pmf(np.arange(N + 1), p=q, n=r) ps_tot[0:-1][0::2] = ps[0:-1] ps_tot[-1] = ps[-1] return ps_tot
[docs]def gen_multi_mode_dist(s, cutoff=50, padding_factor=2): """Generates the total photon number distribution of single mode squeezed states with different squeezing values. Args: s (array): array of squeezing parameters cutoff (int): Fock cutoff Returns: (array[int]): total photon number distribution """ scale = padding_factor cutoff_sc = scale * cutoff ps = np.zeros(cutoff_sc) ps[0] = 1.0 for s_val in s: ps = np.convolve(ps, gen_single_mode_dist(s_val, cutoff_sc))[0:cutoff_sc] return ps
[docs]def total_photon_num_dist_pure_state(cov, cutoff=50, hbar=2, padding_factor=2): r""" Calculates the total photon number distribution of a pure state with zero mean. Args: cov (array): :math:`2N\times 2N` covariance matrix in xp-ordering cutoff (int): Fock cutoff tol (float): tolerance for determining if displacement is negligible hbar (float): the value of :math:`\hbar` in the commutation padding_factor (int): expanded size of the photon distribution to avoid accumulation of errors Returns: (array): Total photon number distribution """ if is_pure_cov(cov): A = Amat(cov, hbar=hbar) (n, _) = A.shape N = n // 2 B = A[0:N, 0:N] rs = np.arctanh(np.linalg.svd(B, compute_uv=False)) return gen_multi_mode_dist(rs, cutoff=cutoff, padding_factor=padding_factor)[0:cutoff] raise ValueError("The Gaussian state is not pure")
[docs]def fock_tensor( S, alpha, cutoff, choi_r=np.arcsinh(1.0), check_symplectic=True, sf_order=False, rtol=1e-05, atol=1e-08, ): r""" Calculates the Fock representation of a Gaussian unitary parametrized by the symplectic matrix S and the displacements alpha up to cutoff in Fock space. Args: S (array): symplectic matrix alpha (array): complex vector of displacements cutoff (int): cutoff in Fock space choi_r (float): squeezing parameter used for the Choi expansion check_symplectic (boolean): checks whether the input matrix is symplectic sf_order (boolean): reshapes the tensor so that it follows the sf ordering of indices rtol (float): the relative tolerance parameter used in `np.allclose` atol (float): the absolute tolerance parameter used in `np.allclose` Return: (array): Tensor containing the Fock representation of the Gaussian unitary """ # Check the matrix is symplectic if check_symplectic: if not is_symplectic(S, rtol=rtol, atol=atol): raise ValueError("The matrix S is not symplectic") # And that S and alpha have compatible dimensions m, _ = S.shape l = m // 2 if l != len(alpha): raise ValueError( "The matrix S and the vector alpha do not have compatible dimensions" ) # Check if S corresponds to an interferometer, if so use optimized routines if np.allclose(S @ S.T, np.identity(m), rtol=rtol, atol=atol) and np.allclose( alpha, 0, rtol=rtol, atol=atol ): reU = S[:l, :l] imU = S[:l, l:] if np.allclose(imU, 0, rtol=rtol, atol=atol): Ub = np.block([[0 * reU, -reU], [-reU.T, 0 * reU]]) tensor = interferometer_real(Ub, cutoff) else: U = reU - 1j * imU Ub = np.block([[0 * U, -U], [-U.T, 0 * U]]) tensor = interferometer(Ub, cutoff) else: # Construct the covariance matrix of l two-mode squeezed vacua pairing modes i and i+l ch = np.cosh(choi_r) * np.identity(l) sh = np.sinh(choi_r) * np.identity(l) zh = np.zeros([l, l]) Schoi = np.block( [[ch, sh, zh, zh], [sh, ch, zh, zh], [zh, zh, ch, -sh], [zh, zh, -sh, ch]] ) # And then its Choi expanded symplectic S_exp = expand(S, list(range(l)), 2 * l) @ Schoi # And this is the corresponding covariance matrix cov = S_exp @ S_exp.T alphat = np.array(list(alpha) + ([0] * l)) x = 2 * alphat.real p = 2 * alphat.imag mu = np.concatenate([x, p]) tensor = state_vector( mu, cov, normalize=False, cutoff=cutoff, hbar=2, check_purity=False, choi_r=choi_r, ) if sf_order: sf_indexing = tuple(chain.from_iterable([[i, i + l] for i in range(l)])) return tensor.transpose(sf_indexing) return tensor
[docs]def probabilities(mu, cov, cutoff, hbar=2.0, rtol=1e-05, atol=1e-08): r"""Generate the Fock space probabilities of a Gaussian state up to a Fock space cutoff. Args: mu (array): vector of means of length ``2*n_modes`` cov (array): covariance matrix of shape ``[2*n_modes, 2*n_modes]`` cutoff (int): cutoff in Fock space hbar (float): value of :math:`\hbar` in the commutation relation :math;`[\hat{x}, \hat{p}]=i\hbar` rtol (float): the relative tolerance parameter used in `np.allclose` atol (float): the absolute tolerance parameter used in `np.allclose` Returns: (array): Fock space probabilities up to cutoff. The shape of this tensor is ``[cutoff]*num_modes``. """ if is_pure_cov(cov, hbar=hbar, rtol=rtol, atol=atol): # Check if the covariance matrix cov is pure return np.abs(state_vector(mu, cov, cutoff=cutoff, hbar=hbar, check_purity=False)) ** 2 num_modes = len(mu) // 2 probs = np.zeros([cutoff] * num_modes) for i in product(range(cutoff), repeat=num_modes): probs[i] = np.maximum( 0.0, np.real_if_close(density_matrix_element(mu, cov, i, i, hbar=hbar)) ) # The maximum is needed because every now and then a probability is very close to zero from below. return probs
[docs]@jit(nopython=True) def loss_mat(eta, cutoff): # pragma: no cover r"""Constructs a binomial loss matrix with transmission eta up to n photons. Args: eta (float): Transmission coefficient. ``eta=0.0`` corresponds to complete loss and ``eta=1.0`` corresponds to no loss. cutoff (int): cutoff in Fock space. Returns: array: :math:`n\times n` matrix representing the loss. """ # If full transmission return the identity if eta < 0.0 or eta > 1.0: raise ValueError("The transmission parameter eta should be a number between 0 and 1.") if eta == 1.0: return np.identity(cutoff) # Otherwise construct the matrix elements recursively lm = np.zeros((cutoff, cutoff)) mu = 1.0 - eta lm[:, 0] = mu ** (np.arange(cutoff)) for i in range(cutoff): for j in range(1, i + 1): lm[i, j] = lm[i, j - 1] * (eta / mu) * (i - j + 1) / (j) return lm
[docs]def update_probabilities_with_loss(etas, probs): """Given a list of transmissivities a tensor of probabilitites, calculate an updated tensor of probabilities after loss is applied. Args: etas (list): List of transmissitivities describing the loss in each of the modes probs (array): Array of probabilitites in the different modes Returns: array: List of loss-updated probabilities with the same shape as probs. """ probs_shape = probs.shape if len(probs_shape) != len(etas): raise ValueError("The list of transmission etas and the tensor of probabilities probs have incompatible dimensions.") alphabet = "abcdefghijklmnopqrstuvwxyz" cutoff = probs_shape[0] for i, eta in enumerate(etas): einstrings = "ij,{}i...->{}j...".format(alphabet[:i], alphabet[:i]) qein = np.zeros_like(probs) qein = np.einsum(einstrings, loss_mat(eta, cutoff), probs) probs = np.copy(qein) return qein
@jit(nopython=True) def _update_1d(probs, one_d, cutoff): # pragma: no cover """ Performs a convolution of the two arrays. The first one does not need to be one dimensional, which is why we do not use ``np.convolve``. Args: probs (array): (multidimensional) array one_d (array): one dimensional array cutoff (int): cutoff in Fock space for the first array Returns: (array): the convolution of the two arrays, with the same shape as ``probs``. """ new_d = np.zeros_like(probs) for i in range(cutoff): for j in range(min(i + 1, len(one_d))): new_d[i] += probs[i - j] * one_d[j] return new_d
[docs]def update_probabilities_with_noise(probs_noise, probs): """Given a list of noise probability distributions for each of the modes and a tensor of probabilitites, calculate an updated tensor of probabilities after noise is applied. Args: probs_noise (list): List of probability distributions describing the noise in each of the modes probs (array): Array of probabilitites in the different modes Returns: array: List of noise-updated probabilities with the same shape as probs. """ probs_shape = probs.shape num_modes = len(probs_shape) cutoff = probs_shape[0] if num_modes != len(probs_noise): raise ValueError( "The list of probability distributions probs_noise and the tensor of probabilities probs have incompatible dimensions." ) for k in range(num_modes): #update one mode at a time perm = np.arange(num_modes) perm[0] = k perm[k] = 0 one_d = probs_noise[k] probs_masked = np.transpose(probs, axes=perm) probs_masked = _update_1d(probs_masked, one_d, cutoff) probs = np.transpose(probs_masked, axes=perm) return probs
[docs]def fidelity(mu1, cov1, mu2, cov2, hbar=2, rtol=1e-05, atol=1e-08): """Calculates the fidelity between two Gaussian quantum states. Note that if the covariance matrices correspond to pure states this function reduces to the modulus square of the overlap of their state vectors. For the derivation see `'Quantum Fidelity for Arbitrary Gaussian States', Banchi et al. <10.1103/PhysRevLett.115.260501>`_. Args: mu1 (array): vector of means of the first state cov1 (array): covariance matrix of the first state mu2 (array): vector of means of the second state cov2 (array): covariance matrix of the second state hbar (float): value of hbar in the uncertainty relation rtol (float): the relative tolerance parameter used in `np.allclose` atol (float): the absolute tolerance parameter used in `np.allclose` Returns: (float): value of the fidelity between the two states """ n0, n1 = cov1.shape m0, m1 = cov2.shape (l0,) = mu1.shape (l1,) = mu1.shape if not n0 == n1 == m0 == m1 == l0 == l1: raise ValueError("The inputs have incompatible shapes") v1 = cov1 / hbar v2 = cov2 / hbar deltar = (mu1 - mu2) / np.sqrt(hbar / 2) n0, n1 = cov1.shape n = n0 // 2 W = sympmat(n) si12 = np.linalg.inv(v1 + v2) vaux = W.T @ si12 @ (0.25 * W + v2 @ W @ v1) p1 = vaux @ W p1 = p1 @ p1 p1 = np.identity(2 * n) + 0.25 * np.linalg.inv(p1) if np.allclose(p1, 0, rtol=rtol, atol=atol): p1 = np.zeros_like(p1) else: p1 = sqrtm(p1) p1 = 2 * (p1 + np.identity(2 * n)) p1 = p1 @ vaux f = np.sqrt(np.linalg.det(si12) * np.linalg.det(p1)) * np.exp( -0.25 * deltar @ si12 @ deltar ) return f